博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
OpenCV3.1 xfeatures2d::SIFT 使用
阅读量:6856 次
发布时间:2019-06-26

本文共 2493 字,大约阅读时间需要 8 分钟。

hot3.png

OpenCV3.1 SIFT使用

OpenCV3对OpenCV的模块进行了调整,将开发中与nofree模块放在 了OpenCV_contrib中(包含SIFT),gitHub上的官方项目分成了两个,opencv 与 opencv_contrib。所以,要使用sift接口需在opencv3.1基础上,再安装opencv_contrib。本文主要记录如何安装opencv_contrib,配置Xcode,sift接口的用法。

环境:OSX + Xcode + OpenCV3.1

install opencv_contrib

  • download contrib source code , follow README.md to install
$ cd 
$ cmake -DOPENCV_EXTRA_MODULES_PATH=
/modules
$ make -j5$ sudo make install

Where <opencv_build_directory> and <opencv_source_directory> is directory in opencv3.1

configuration Xcode

like

pro_name Build Setting > Search Paths

  • /usr/local/lib
  • /usr/local/include

pro_name Build Setting >Other Linker Flags

  • -lopencv_stitching -lopencv_superres -lopencv_videostab -lopencv_aruco -lopencv_bgsegm -lopencv_bioinspired -lopencv_ccalib -lopencv_dnn -lopencv_dpm -lopencv_fuzzy -lopencv_line_descriptor -lopencv_optflow -lopencv_plot -lopencv_reg -lopencv_saliency -lopencv_stereo -lopencv_structured_light -lopencv_rgbd -lopencv_surface_matching -lopencv_tracking -lopencv_datasets -lopencv_text -lopencv_face -lopencv_xfeatures2d -lopencv_shape -lopencv_video -lopencv_ximgproc -lopencv_calib3d -lopencv_features2d -lopencv_flann -lopencv_xobjdetect -lopencv_objdetect -lopencv_ml -lopencv_xphoto -lippicv -lopencv_highgui -lopencv_videoio -lopencv_imgcodecs -lopencv_photo -lopencv_imgproc -lopencv_core

sample of sift

  • sample in (souce_dir)/samples/cpp/tutorial_code/xfeatures2D/LATCH_match.cpp or bellow

    #include "opencv2/xfeatures2d.hpp"// // now, you can no more create an instance on the 'stack', like in the tutorial// (yea, noticed for a fix/pr).// you will have to use cv::Ptr all the way down://cv::Ptr
    f2d = xfeatures2d::SIFT::create();//cv::Ptr
    f2d = xfeatures2d::SURF::create();//cv::Ptr
    f2d = ORB::create();// you get the picture, i hope..//-- Step 1: Detect the keypoints:std::vector
    keypoints_1, keypoints_2; f2d->detect( img_1, keypoints_1 );f2d->detect( img_2, keypoints_2 );//-- Step 2: Calculate descriptors (feature vectors) Mat descriptors_1, descriptors_2; f2d->compute( img_1, keypoints_1, descriptors_1 );f2d->compute( img_2, keypoints_2, descriptors_2 );//-- Step 3: Matching descriptor vectors using BFMatcher :BFMatcher matcher;std::vector< DMatch > matches;matcher.match( descriptors_1, descriptors_2, matches );

References

转载于:https://my.oschina.net/Jerrymingzj/blog/803821

你可能感兴趣的文章
HDU 1421 搬寝室[DP]
查看>>
二层设备与三层设备的区别--总结
查看>>
ZOJ 3829 Known Notation(字符串处理 数学 牡丹江现场赛)
查看>>
JS操作css样式用法
查看>>
怎样使用 CCache 进行 cocos2d-x 编译加速
查看>>
Thymeleaf 3.0 专题
查看>>
Spring下的@Inject、@Autowired、@Resource注解区别(转)
查看>>
View的setTag()与getTag()方法使用
查看>>
UML中类结构图示例
查看>>
03-hibernate注解-关系映射级别注解-一对一
查看>>
EasyUI combotree的使用
查看>>
C#网络编程二:SOCKET编程
查看>>
【多媒体封装格式详解】--- AAC ADTS格式分析
查看>>
联想IDEAPAD 320C-15笔记本显卡驱动问题
查看>>
ES6简介
查看>>
UWP FillRowViewPanel
查看>>
目前的.NET(C#)世界里,主流的ORM框架
查看>>
Java 基础知识点
查看>>
Linux--忘记MySQL密码的解决方法和输入mysqld_safe --skip-grant-tables &后无法进入MySQL的解决方法...
查看>>
vimperator
查看>>